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kipiinch
2 (ksi) kilo pascal (kPa) 6.894 757 X 1+3

ktap newton-second/m
2 (N-s/m 2 ) 1.000 000 X F+2

micron meter (M) 1. ()Of) tit) .X [-6

mil meter (m) 2.540 (000It X 1-5

mile (international) meter (m) I.609 344 X I +3

ounce kilogram (kg) 2.834 952 X F-2

pound-force O(hf avoirdupois) newton (Ni 4.448 222

pound-force Inch newton-Ometer (N.m) I. 129 848 \ U-I

pound-force/inch newton/meter (N/m) 1.751 268 X F+2

pound-force/foot
2  kilo pascal (kPa) 4.788 026 X [-2

pound-force/inch
2 (PSi) kilo pascal (kPa) 6.894 757

pound-mass (hm avoirdupois) kilogram (kg) 4.535 924 X F- I

pound-mass-foot
2 (moment of inertia) kilogram-meter2 (kg.m

2 ) 4.214 Oi X F-2

pound-mass/foot
3  kilogram/meter3 (kg/m

3
) 1.601 846 X F+ I

rad (radiation dose absorbed! Gray (Gyl** 1.000 00(1 X F-2

roentgen coulomb/kilogram (C/kg) 2.579 760 X [-4

shake second (st I.(10) (1000 ) 0 X I:-R

slug kilogram (kg) 1.459 90 X F+I

iorr (mm Hg. O*C) kilo pascal (kPa} 1.333 22 X F-I

'The tecquerel (Bqi is the SI unit of radioactivity: Bp = I event/s.

'*The (ray (Gy) is the SI unit of alsorhed radiation.
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SECTION 1

INTRODUCTION

Flow fields associated with shock reflec- (although the micro-scale mixing within the
tions often times contain embedded shear large structures remains Reynolds number
layers. Typical examples are slip lines from dependent). About the same time. Winant
triple points, wall boundary layers, and wall and Browand (1974) demonstrated that the
jets associated with double-Mach reflec- growth of the mixing layer is governed by
tions. Because the Reynolds numbers the pairing mechanism of these vortical
associated with these flows are very large structures. Many other examples of co-
(typically 10% per centimeter or even herent vortex behavior may be found in
larger). such shear layers are essentially M. Van Dyke's Albuni of Fluid Motion
inviscid tangential velocity discontinuities. (1982).

Recently. Monkewitz and Huerre (1982)
It has been known for more than 100 lyears performed a linear spatial stability analysis
that certain types of subsonic shear layers of the inviscid momentum equation, and

are inviscidly unstable. Lord Rayleigh established the most amplified frequency

(1880) proved a necessary condition and (t) and its nth subharmonics (W = w/n)

later Tollmien (1935) proved a sufficient
condition for the unstable growvth of for a shear layer with a Tanh(y) velocity
perturbations in shear layers. This is profile. Ho and Huang (1982) confirmed
summarized by the Rayleigh-Tollmien experimentally the effectiveness of these
Inflection Point Theorem which states that: subharmonic forcing frequencies in modi-
solutions of the inviscid momentum equa- fying the dynamics and spreading rate of
tion are unstable to small perturbations if the shear layer. Our calculations will utilize
(and only if) the initial shear layer profile both results.
contains an inflection point (Schlichting, Many shear layer computations involving
1968). discretizations of the Navier-Stokes equa-

tions are available. These include finite-dif-
The late-time consequence of such flow ference methods (e.g.. Corcos and
instabilities is that perturbed shear layers Sherman 119841. Mclnville et al. 119851.
eventually roll up into large-scale vortex and Davis and Moore 119851). spectral
structures. Today, there is ample exper- methods (Riley and Metcalfe. 1980). and
imental evidence that shear layers evolve vortex methods (e.g.. Ashurst 119791.
according to this mechanism. One of the Leonard 119801. and Ghoniem. Chorin and
most famous examples is the experimental Oppenheim 119821), Oppenheim 119861).
work of Brown and Roshko (1974) which These calculations succeed in resolving
demonstrates that shear layers roll up into small-scale flowfield structures and are of
organized rotational structures,' and that high quality. However, modeling of the
the largest-scale structures are essentially viscous terms imposes computational inef-
independent of the flow Reynolds number ficiencies because viscous length scales

I. Apparently Brown and Roshko were not the first to observe such effects. Michel ( 1932)
photographed organized rotational structures in an acoustically perturbed free shear layer.
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must be resolved on the mesh. This either gives nondiffusive solutions for gas dynam-
severely restricts the time step or leads to ics. This algorithm has produced accurate
implicit time differencing and resultant laminar solutions to a variety of blast wave
numerical diffusion. The random vortex reflection problems (Colella et al. 11985bi
method (Chorin 119731 and 119861) avoids and Glaz et al. 119851). Often the shear
these problems at the expense of introduc- layers embedded in these flows roll up into
ing a statistical error, and the limitation that large-scale vortex structures (Kuhl et al.
the flow must be incompressible. 1987). One of the questions explored here

is: How accurate are these nonsmooth (i.e..
Described here is an alternative, large- fluctuating) portions of the flow. as
Reynolds-number approach2 that is based predicted by the numerical solutions of the
on the nonsteady solution of the inviscid inviscid conservation laws? Illustrative
conservation laws of gas dynamics. In calculations are presented for three classes
contrast with the vortex methods, there is of problems typical of shock reflection flow
no large-Mach-number limit with this fields: free shear layers, wall boundary
approach and the baroclinic generation of layers and a wall jet. By design, they are
vorticity is automatically included. In limited to nonsteady calculations of two-
contrast with the implicit finite difference dimensional shear layers that are steady in
solutions of the Navier-Stokes equations, the mean or time-averaged sense. The
the present approach focuses on an objectives of this work were to demon-
accurate, nondiffusive evaluation of the strate that the dynamic evolution of these
convective derivatives which seem to "steady" shear layers can be predicted by
control the dynamics of the large-scale a nonsteady solution of the inviscid con-
structures. Hence, molecular diffusion servation law of gas dynamics, and also to
effects (i.e., diffusion of vorticity and evaluate the accuracy of such solutions by
passive scalars across stream-lines) are comparing the results with experimental
neglected during the time-scale of the data.
calculation. The disadvantages of this
inviscid approach are that calculations of
small-Mach-number flows are expensive, The numerical formulation of the calcula-
and shear at wall boundaries must be tions is described in Section 2. A detailed
programmed into the calculation as an discussion of the results for the free shear
initial condition. layer. wall shear layer and wall jet

calculations are presented in Sections 3. 4
Numerical results were obtained by means and 5, respectively. Conclusions and gen-
of an explicit second-order Godunov eralizations drawn from these results are
algorithm (Colella and Glaz 1985al) which offered in Section 6.

2. This inviscid approach is also being used with the " Flux-Corrected Transport" codes (Grinstein et

al.. 1986) and in the inviscid vortex dynamics calculations of Inoue (1985, 1987).
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SECTION 2

FORMULATION

2.1 GOVERNING EQUATIONS. (wv)n + 1 = (WV)n

The time-dependent flow field is governed At
by the conservation laws for mass, momen- -I W a dA dt
turn and total energy. Considered here is Jo JV
an inviscid gas dynamics approximation
valid for large Reynolds number flows; +" At
hence, molecular viscosity and heat con- +J f u"dA dt (2)
duction, as well as gravitational forces are 0 dV -

neglected. For a computational volume V The objective of a numerical algorithm is
with boundary jV, the equations of gas to evaluate the above integrals as accurate-
dynamics may be written in strong conser- ly as possible.
vation form as:

2.2 NUMERICAL METHODS.

f WdV The computations are two-dimensional and
V performed in Cartesian coordinates. A

_ £ rrectangular mesh. aligned with the mean
=- "dA+a " dA (1) flow (i.e., the upstream splitter plate or

a V av bottom wall), is used. Variable mesh
where spacing is utilized in order to concentrate

the computational effort in regions of
interest and minimize any adverse effects

r { of the artificial outflow boundary condi-
W OtPj tions. All computations are operator split.

The temporal approximation of. say. an x
sweep for Eq. (2) may be written in

ET i- e + 1/2 u - u conservation form:

p=(y-1) Pe (WV) n+I =(WV) ij

In the above. u denotes the gas velocity, -F +1/2 F+1/2
while p. p and e represent the gas pressure, - [i + 1- /21
density and internal energy, respectively. [ + 112J i-I /2J
For convenience, the specific heat ratio is
assumed here to be constant: -y= 1.4. [+n1,/2 Pn+1/2] (

+ [p + 1/ P n(3)
Eq. (1) may be formally integrated over a[ i+1/1/2J i- 1/2J]

time At = tn+1 - tn to evaluate new
cell-averaged values of the conserved where the cell interface fluxes, F, and
variables W: pressure-work terms, P, are given by:

3



n + 1/2 where Ax denotes the mesh spacing. and

Fi+ 1/2,j a = yp/p represents the local sound

speed. The Courant number used in these

n + 1/2 n + I/2 . calculations was C = 0.95.
1/2,j + 1/2, This numerical method is most appropriate

for nonsteady compress'b;e flows of gas
p n+ 1/2= or n+ 1/2 . A dynamics. It can also be used to provide
i+ 1/ 2 .J =i +112,j'A +1/2, J  inviscid solutions of nonsteady small

Mach-number flows, but one must either
compromise the computational efficiency

A4+ 1/2,j= A(xi+ 112, ) or violate similitude in Mach number. For
-j example, the Mach numbers typical of

many shear layer experiments are on the
These interface fluxes and pressures are order of M - 0.01, and it would take
evaluated by the second-order Godunov approximately one hundred time steps to
technique (Colella and Glaz, 1985). First, convect a fluid particle through one
piecewise-linear subgrid interpolant func- computational cell with an explicit scheme.
tions are used to define the environment Note that there is nothing theoretically
everywhere within the computational cell at wrong with this approach. In fact. it can be
the initial time level, tn.Second. the slopes viewed as a very accurate (albeit expen-
of the interpolants are limited to maintain sive) time integration scheme. To save
monotonicity of the solution. Starting at computing costs, however, the sound speed
each cell boundary (e.g., i+1/2j) at time in such small Mach-number problems was
tn+ l/2 , the three gas dynamic characteris- modified so that flow Mach number wastypically M - 0.2. In such cases the density
tics are traced back to time level tn where and velocity ratios across the shear layer
the Riemann variables are evaluated. advlct aisars h ha ae

were preserved, but similitude in Mach
Beginning with these values. the Riemann number was violated. For low speed flows.
equations are then integrated along the however, compressibility or Mach number
characteristic curves to evaluate the flow effects are generally not important. and this
field at the cell interface at the half time Mach number compromise was found to be
level tn+1/2. Finally. the interface fluxes worth the improvement in computational
and pressures based on this solution are efficiency.
used in the conservative difference scheme
of Eq. (3) to update the cell-averaged 2.4 INTERFACE DYNAMICS.
values of mass, momentum and energy. To clearly illustrate the dynamics of shear

layers. it was necessary to accurately track
2.3 TIME-STEP CONTROL. material interfaces (or lines in 2-D). Such

lines were discretized by a series of
The above represents an explicit scheme connected points Xk(t) which moved with
for solving a system of hyperbolic conserva- the local material velocity. i.e.:
tion laws. hence the time step is limited by d
the Courant-Friedrichs-Lewy condition: -1k = u..- k 2..... K

At = CAr/(a + I'd) (4) The initial spacing between points was
assumed to be one-tenth the computational

4



cell size. The location of each material place the boundaries of the mesh far away
point was Updated according to a finite from the layer and thereby minimize any
difference approximation to Eq. (5), boundary influences on the free shear layer
namely: development.

n + 1/2 n nx The shear layers were modeled or approxi-
- k  k +  k(t))t/ 2  mated by a Tanh(y) velocity profile. This

(6) approach not only allows one to resolve the

n+ 1 n+ 1/2 u n  + 1/2 shear layer on the computational grid. it
.K-k  =r k  + ( ()Att 2 also removes what would other-wise be an
where u" represents a velocity that is inviscid velocity discontinuity-thereby reg-

-hr ularizing the inviscid problem. In effect.
linearly interpolated from the four nearest viscoi t i alow d t o blet.o n ef fe r

comptatona cels urrondig pintXk- viscosity is allowed to act on the flow for
computational ceils surrounding point k. a long enough time to spread the shear over
Note that for both steps in Eq. (6), the a finite thickness of fluid: this solution is
velocity field is based on time tn (because then mapped onto the grid, and thereafter
the numerical algorithm is operator split); the effects of molecular viscosity are
only the interpolation point changes: i.e., eliminated.

n n+ 1/2
' k versus x k  . When the distance be- The following Tanh(y) velocity profile was
tween neighboring points ji-k--k+ ii used to initialize the flowfield:

exceeded twice the initial spacing, a new
marker was inserted at their midpoint to (ry) =Ay)
maintain numerical resolution. The number 0)(7)
of marker points was allowed to increase
to a maximum of 75,000 (which would where
double the computational time), after
which no further points would be inserted fAy) = LIMnI + A Tanh ( 2y/6-yo )1 (8)
over the last 60 percent of the grid. Marker
points that passed outside the fine-grid Ur= (LI + U2 ) / 2 (9)
region were deleted, and then the entire
system was renumbered. A = (U1 - Li2) / (ULI + L2 ) (10)

2.5 INITIAL CONDITIONS.
In the above, U I and U2 denote the free

The calculations were performed on a stream velocity at y = +oo respectively: Um
two-dimensional Cartesian grid. A typical represents the mean flow velocity: X is the
example for the free shear layer problems shear parameter: y. denotes the centerline
is shown in Figure 1. A fine-zoned region, of the layer, while 8 is the maximum-slope
covering the domain: thickness of the layer. typically 2 cells. In

most of the results to be presented. the
0 x X F lengths have been normalized by 8/2.

-YF - Y - YF In some free shear layer problems, the

was centered on the centerline of the layer. density of the two streams is different. In
An expanding grid was used (above. below, these cases a Tanh(y) profile was also used
and to the right of the fine-grid region) to to approximate the density distribution
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across the molecular diffusion region, N
namely: g(t) = I + En sin Wnt (17)

n=l
P(xv.o) = h(y) (11) The perturbation frequencies (w,,) and

where amplitudes (En) were taken from the linear
stability analysis for Tanh(y) shear layers

h(y) = Pm I1 I +. p Tunh (2y/6 -yo)] (12) of Monkewitz and Huerre (1982):

ol = 0.219andwn = wl/n

Pm =( P1  P2) / 2 (13) 1 = 0 -01 E2 = 0.75E1,

E3 = 0.55 1 , E4 = 0.44E1 , (18)

AP (P 1 - P2) / ( p1  P 2  (14) and En = 1.7 E1 /n for n > 5 (19)

From the above, that the maximum
In the above PI and P2 represent the free perturbation amplitude used in this study
stream densities at y = + oo, respectively; was one percent (el = 0.01). Note that the
Pm denotes the mean density of the layer; above disturbances can be viewed as
and XP is the density parameter, modeling the spectrum of perturbations

which arise naturally in the flow (e.g..
2.6 BOUNDARY CONDITIONS. molecular fluctuations which are amplified

to a macroscopic scale by means of linear
The left boundary of the mesh was driven stability mechanisms).
by the same Tanh(y) profiles but with a The implementation of boundary condi-
sinusoidal time perturbation on the stream- tions was straightforward for the calcula-
wise velocity component: tions presented here. Dirichlet conditions

are imposed at the upstream side lusing
it(0. 1, t) = I(X, y, o) • g(t) eqs. (15) - (17) and, for the free shear layer

(15) problems, at the top and bottom (using free
(o..y, t) = 0 stream values)I. The downstream side is

treated with standard outflow conditions for
P(o,y,t) = h(y) (16) all variables. Wall boundary layers are

treated by reflection, thereby allowing
where inviscid slip.

7



SECTION 3

FREE SHEAR LAYER CALCULATIONS

3.1 FORCED SHEAR LAYERS. calculation was run for 2000 cycles. The
final interface shapes are depicted in

The purpose of these calculations was to Figure 2.
investigate the dynamic response of a shear
layer to particular perturbation frequen- In the Mode I calculation (Fig. 2a). only the
cies. and to compare the results with fundamental frequency w, was used to
experimental data. To that end, the shear perturb the layer. Undulations in the shear
layer parameters were chosen to corre- layer are first noticeable at x r= 24. while
spond to the forced shear layer experiments the first cusp in the material line appears
of Ho and Huang (1982): at x a 75. At larger distances. Figure 2

shows that the layer rolled up into discrete
LU1 = 1.31 , L2 = 0.69 , Urn = 1.0 vortices that had a constant wavelength LI

= 380 corresponding to the fundamental
frequency wt (where 8 = 6). The width of

PI = P2 = I p = o the mixing region was about 18,. For this
Mode I response, the vortices continued to

In the above, the velocity components have maintain their own identity. and no merging
been normalized by the average velocity of occurred for x , 300. There was. however.
the two streams, and the density by the soe"bringfecs wremtia

ambint alu. Th laerswereiniialzed some "rebraiding effects," where material
ambient value. The layers were initialized from the outer bottom edge of one vortex
with uniform thermodynamic properties: structure is drawn aft and down. thus

forming the lower edge of the trailing
el = e2=44.63, PI = P2 17.86, vortex structure. In a similar fashion.

material from the top of the trailing vortex
a= a2 =5.0, = 1.4 is drawn forward, up and over the leading

Note that by this choice of sound speed, the vortex - thereby again covering the braid
mean flow Mach number is Mm = 0.2. The region between vortices.
fine-grid region consisted of 300 x-cells by
60 y-cells: the overall mesh covered a In the Mode 1I calculation, the first and
domain of 8600 by 3000. The initial shear second frequencies (w, and (W2) were used
layer width was 2 cells based on the to perturb the layer. Initially. vortices
maximum slope thickness, or say 8o = 6 formed at the fundamental wavelength L,.
cells based on the 99 percentile change in Soon, however, pairs of vortices began
velocity. A one percent perturbation interacting. The trailing vortex of each pair
amplitude was used for each frequency. was drawn up and over and then entrained
The dynamics of the flow was elucidated into the leading vortex - thus forming a
by tracking a material line that was larger-scale structure. Subsequently. these
embedded in the initial center line (i.e., structures maintained their identity. and no
inflection point) of the shear layer. Each further merging occurred for x -< 300. The

8
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merged wavelength was twice the funda- vortex was drawn Lip and over and
mental value (L2 = 2L1 = 68t), correspond- entrained into the main structure. The
ing to the second frequency. o2 = w1/2. The merged wavelength was approximately four
final width of the mixing region was times the fundamental value (L4 = 4L1 =
constant at about 2.580. The rollup of the 128o). The computational grid was too
material line in the merged structures was short to establish the asymptotic vortex
quite smooth and basically elliptical; five pattern and mixing region width. As in
complete rotations of the central cusp can Mode IIl, the rollup of the material line in
be observed. The start of rebraiding effects the merged structures was very complicated
are visible near the right edge of the grid. due to the nonuniform distribution of

vorticity created by the merging of four
In the Mode I! calculation, the first and vortices.
third frequencies (wo and W3) were used to The above-described dynamic response
perturb the layer. Just as before, vortices duplicates the experimental results found
initially formed at the fundamental wave- by Ho and Huang (1982) in their forced
length. L1. Soon, however, vortices began shear layer experiments for all modes that
interacting in groups of three, and a more they studied Modes I through IV).
complex merging pattern developed.

These results indicate that the dynamic
The third (or last) vortex was drawn up and response of a shear layer is deterninisticall '
over and entrained into the middle vortex, related to the perturbation frequencies. If
forming a stronger vortex pair. This pair only the fundamental frequency (wi) and
attracted the leading vortex which was then one subharmonic (0on) perturbations are
entrained from below. The wavelength of used, the vortices merge to form periodic
the final merged structures was three times large-scale structures with a constant wave-
the fundamental value (L3 = 3L1 = 98o), length Ln = nL 1. No further merging
corresponding to the third frequency, W03 = occurs, and the width of the mixing region
w'/3. The final width of the mixing region remains constant at a value of about
was constant at about 58. Rebraiding or 2.5(n-1)8o. Hence, continued growth of the
further merging did not occur for x 4 300. mixing region requires the addition of
The rollup of the material line in the large smaller and smaller frequency (i.e. longer
structures was quite complicated in this and longer wavelength) perturbations.
case, due no doubt to the nonuniform Preliminary calculations supporting these
distribution of vorticity created by the conclusions were reported in Chien et al.
merging of three vortices. (1987).

In the Mode IV calculation, the first and 3.2 SPREADING SHEAR LAYER.

fourth frequencies (0oi and W)4) were used A variety of perturbation frequencies are
to perturb the layer. Again, vortices formed present in most actual shear layers. and the
at the fundamental wavelength, L1. Soon, mixing width of the shear layer continues
however. vortices began interacting in to grow with increasing distance. This
groups of four. and a very complex merging section describes a numerical simulation of
pattern developed. First, the middle two just such a situation. namely, the funda-
vortices merged: then they entrained the mental shear layer experiments of Brown
leading vortex from below; finally, the last and Roshko (1974). The particular case
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considered was that of a 5 m/s helium flow at x a 65. Clockwise-rotating vortex
(state 1) over a 1.89 m/s nitrogen flow structures form initially at the fundamental
(state 2); expressed in terms of the shear wavelength LI; but these rapidly merge to
layer parameters, these become: form larger-scale structures. In this way,

the mixing width continues to grow with
U1 = 1.451, U2 = 0.549, Um = 1.00 increasing streamwise distance.

A-0.45 1, r = U2 /U I = 0.378 The response of the shear layer was
approximately periodic. Figure 3 depicts

Pt = I =7 Ap = - 0.75 the evolution of the interface over one such
period from frame a (t = 4035) to frame

In the above, the velocity components have s (t = 5013)1; frame t shows that this
been nondimensionalized by the average interface shape reappears again at t = 6018,
velocity of the two streams, and the density thus the period of the overall flow is At
by pl. By design, the dynamic pressure of 1000. The following is a detailed descrip-
the two streams are equal. tion of the development of the large-scale

structures depicted in frame s (t = 5013).
The calculation was performed on a grid The individual vortex structures are labeled
with a fine-zoned region of 500 x-cells by sequentially with cardinal numbers. Con-
100 y-cells (Ax = Ay = 1); the complete grid sidered first is the formation of the
covers a domain of 8800 by 3000. Again, largest-scale structure, of frame s, structure
the initial shear layer width was 80 = 6 cells 6-12. Vortices 6, 7 and 8 merge (frames d
(based on the 99 percentile change in through g) in a Mode III response to form
velocity). The flow field was initialized by structure 6-8. Vortices 9 and 10 pair and
a Tanh(y) profile for both the velocity (Eq. merge (frames g through j) in a Mode II
8) and density field (Eq. 12), and a uniform response; vortices 11 and 12 also pair and

pressure: PI = P2 = 17.86. The pressure was merge (frames h through j). Finally.
structures 6-8 and 9, 10 and 11. 12 interactand merge to form the largest-scale

number was Mm = 0.4 (while MI = M2  structure 6-12 shown in frame s.
0.29). Only the velocity field was perturbed
on the left boundary (according to Eq. 15). In the meantime, structure 13-18 has been
For the first thousand cycles only the developing. Vortices 13, 14 and 15 merge
fundamental perturbation frequency w1  (frames i through I) in a Mode Ill response;
was used so that the mixing started vortices 16, 17 and 18 also merge (frames
gradually: thereafter (cycles 1,000 to j through I) in a Mode IlI response. Then
10,000) the first ten modes were used to structure 13-15 pairs and merges with
model the natural growth of a spectrum of structure 16-18 (frames n through p) in a
small perturbations present in most experi- Mode VI response, resulting in the
ments. A material line (initially on the large-scale structure 13-18.
center line of the shear layer) was tracked
to follow the distortion of the interface. At the same time, structure 19-24 has been

developing. Vortices 19, 20 and 21 merge
The dynamic evolution of the shear layer (frames k through m) in a Mode III re-
is depicted in Figure 3 by means of material sponse; vortices 22, 23 and 24 also merge
interface plots at various times. The first (frames m through o) in a Mode Ill
cusp or kink in the material line appears response. Finally, structure 19-21 pairs
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with structure 22-24 (frames r and s) in a and black lines on the large structures of
Mode VI response. resulting in structure the experiment may now be understood. in
19-24 as shown in frame s. light of Fig. 4a, as folded or interleaved

regions of pure helium or pure nitrogen.

In summary, the large-scale structures are
created by Mode II, Ill and VI merging Also included in Figure 4 are the
processes. Interface shapes periodically corresponding density, vorticity and over-
reappear every At , 1000. pressure contours. The shape of the large

structures as deduced from the density
The material interface in Figure 3 is contours agrees with the material interface
actually represented by unconnected dots shape, indicating little numerical diffusion.
or tracer points. Initially the interface It is interesting to note that vorticity is
contained 5,000 such points (ten points per created near the braid regions and
Ax). The number of tracers rapidly entrained into the structures. Approximate-
increased during the calculation to a ly circular low pressure regions are found
maximum of 75,000 points due to the large in each large structure, and this generates
strain in the braid regions between a radial pressure gradient. As the he-
structures. The length of the interface lium-nitrogen interface is entrained
increased by at least a factor of 15 due to obliquely through this pressure gradient.
the continued vortex-merging process. vorticity is generated by the baroclinic

IT (l/p) x V pi mechanism. The magnitudeof the baroclinicly-generated vorticity
The initial material interface fluid seems to o
cover a significant fraction of the cross-sec- reaches about minus one half of the inflow

tional area of the large structures. This is vorticity, hence it must have an effect on
a consequence of mixing by an inviscid, the flow. Indeed, close inspection of the
nondiffusive folding of the material inter- material interface reveals some small-
face. Hence. regions of essentially pure er-scale vortices rotating in the counter-
helium are interleaved with regions of pure clockwise direction. This causes the

nitrogen. This effect is visible in exper- merging patterns to be considerably more

imental photographs to be shown next. complex and less regular than in Figure 2.

Figure 4(a) depicts the calculated material Figure 5 depicts the flow field near the
interface at t = 5013. For comparison, center line (i.e., y = 0.5) at t = 5013. Large
Figure 4(b) presents a shadowgraph picture fluctuations are evident in the velocity.
of the helium-nitrogen interface recorded density and dynamic pressure. In fact.
during the shear layer experiments (Brown densities corresponding to pure helium and
and Roshko. 1974; Fig. 3d). Similarities to pure nitrogen are seen near tle center
between the calculated and experimental line; similarly, the velocity fluctuates
interface are remarkable. The calculated between values corresponding to approxi-
spreading rate varied between 18 and 22 mately UI and to U2. Overpressure fluc-
percent. which is in excellent agreement tuations are small (between +1.5 to -4.0
with visual spreading rate of 8' ,i = 21 percent of ambient), which is quite
percent observed in the experiment. The comforting in light of the Mach number
shape and wavelength of the large-scale compromise (0.29 4 M , 0.4) used for this
structures are quite similar. The fine white calculation.
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Monitoring stations located at x = 100, 200, pressure profile was constant and equal to
and 400 were used to store the flow field the ambient value.
time histories. These were then integrated
in time over the last 2000 cycles of the Figure 7 presents the fluctuating flow
calculation (about 6 periods of the profiles corresponding to the mean flow
large-scale structures at x = 400) to depicted in Figure 6. These were calculated
establish the mean shear layer profiles. The as root-mean-square time averages about
mean velocity and density profiles are the mean values using the last 2000 cycles.
depicted in Figure 6. The three stations are There, u' and v' represent the streamwise
compared by means of the scaling variable: and transverse velocity fluctuations, u' v'

denotes the fluctuating shear stress, while
lSL= Y / (x - -To) (20) p' and p' represent the density and

pressure fluctuations, respectively. The
where x denotes the effective origin of the fluctuating flow profiles are reasonably
breakdown of the shear layer (Xs = 25, smooth, except for u'v' which probably
according to Fig. 5). The profiles seem to requires a longer time average to achieve
collapse reasonably well with this scaling, convergence. The profiles are remarkably
The shear layer is resolved across approxi- similar, considering that the rotational
nately 10. 25 and 50 computational cells structures at x = 400 are much more
at the first, second and third stations, complex than at x = 100. The shaded region
respectively, in Figure 7d denotes the fluctuating density

The shaded curves in that figure denote the profile measured by Konrad (1977) for the

mean profiles as measured by Brown and same shear layer that was studied by Brown

Roshko (1974). The calculated density and Roshko. The calculated density profiles

profiles are in excellent agreement with the are in excellent agreement with this data

experimental profiles - even to such - even the detailed features such as the

detailed features as multiple inflection peak values and the plateau region near

points and plateau regions (e.g., near 71 = lISL = 0.07 agree quite well.

0.05). Agreement between the calculated
and measured mean velocity profiles is also The dashed curves in Figure 7 represent the
good. considering the accuracy of evaluat- r.m.s. velocity fluctuations as measured by
ing the velocities from pitot tube measure- Oster and Wygnanski (1982: their Figs. 6a.
ments for flows with large density 7b and 7c) for a constant density shear
variations, layer with a different velocity ratio. Our

calculated profiles are only qualitatively
The mean transverse velocities lie in the similar to their profiles. For example. they
range: find only single-peaked profiles, while our

calculated profiles of u' and u'v' have a
0.016 (for '/SL > 0.05) central peak and side lobes, the latter being

V/LI 1 0 (for IISL = o) caused by the large density in our problem.

- 0.008 (for rlSL < - 0.05) The peak values of the fluctuating quanti-

ties are compared with other shear layer
indicating that the mixing creates an studies in Table 1. The present results
outward displacement of the streamlines on agree quite well with the peak values
either side of the shear layer. The mean obtained from the 2D, inviscid. vortex
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Table 1. Comparison of Peak Fluctuating Quantities.

Case Conditions Peak Values (10-2)

FREE SHEAR LAYERS X r Xp uL/UI v'/Ui W /UI -ilv'/U1
2 P'/P2 P'/PI

Vortex Dynamics Calc 0.25 0.6 0 13 9.3 -- 0.32-0.38 .. ..
(Inoue, 1985)
Oster and 0.25 0.6 0 7.2 6.1 5.8 0.21 .. ..
Wygnanski (1982) 0.45 0.38 0 11.2a 95a 9 .0a 0.50a .. ..

Present Calculations 0.45 0.38 -0.7.
x = 100 9.4 11.2 -- 0.54 29 1.3
x = 200 15.9 15.4 -- 0.25 35 1.5
x = 400 14.5 18.8 -- 0.69 35 1.7

WALL SHEAR LAYERS X r w u U® v'/U w'/U, -'v'/U2 P'/p, P'/p,

Shock Tube Case
x = 400 -0.39 2.27 0.2C 19 10 -- 0.13 11 8
x = 600 26 12 -- 0.16 13 9
x = 800 29 14 -- 0.12 12 10
x = 950 31 15 -- 0.059 10 11

Owen et al. (1975) -- -- -- 10 --
Tripped Flat Plate
Case 1 0 0
x = 400 18.5 7.26 -- 0.0531 0.169 0.212
x = 600 18.1 7.36 -- 0.0259 0.156 0.191
x = 800 17.6 7.25 -- 0.0226 0.144 0.175
x = 950 17.1 7.15 -- 0.0186 0.135 0.162

Klebanoff (1955) 8.75 4.0 6.4 0.1 38b  .

2
WALL JET X r Xp u'/Uj v'/Uj u' v"/Uj p'/pj p'/pj
Present Calculations -1 0
x = 85 (5H) 23 28 -- 1.85 0.75 1.0
x = 170 (01H) 25-28 33 -- 4.5 0.83 1.1

Bajura and -1 0
Catalano (1975)

x = 10H 0.7 -- -- -- --
x - 20H 2.0 .. ...... ..

OScaled values. hased on AU/U = 0.622.
hL-uluated from I-q. 38
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dynamics calculations of Inoue (1985). The monic perturbations cause these vortices to
present peak values are 1.5 to 2 times larger merge - forming successively larger-scale
than the experimental data of Oster and rotational structures. The dynamics of the
Wygnanski (1982). Of course, there are large-scale structures determines the mix-
differences in the problems considered ing of the two streams and controls the
(e.g.. different \ and X,,), and the fluctuations. The present inviscid numeri-
experimental data certainly includes the cal simulations agree rather well with
effects of viscous diffusion and dissipation, experimental data - not only for such
but the latter effects should be small macroscopic features like the spreading
because of the large Reynolds number of rate (8' a = 0.21) and the shape and
the flow. Probably the main reason why the wavelength of the large-scale structures.
calculated peaks (especially u' and v' ) are but also in mean flow profiles such as
larger than the data is that the calculations density and velocity. Even the time-
are two dimensional while the experimental averaged fluctuating flow profiles such as
data contained three dimensional fluctua- density agree with the data. Hence, we
tions - that is, some of the fluctuating conclude that the dynamic evolution of the
kinetic energy is stored in the third large-scale structures is dominated by
dimension. inviscid effects that are well approximated

by nonsteady solutions of the conservation
3.3 SUMMARY. laws of gas dynamics.

These results indicate that the dynamic The present large-Reynolds-number ap-
response of a di ,orbed shear layer is proach (i.e., the direct solution of the
basically independent of the initial shear nonsteady conservation laws of gas dynam-
layer profile. and independent of the ics) offers then one technique for extending
perturbing frequency as long as a spectrum the numerical simulations of fluctuating
of frequencies are available to the flow. shear layers to the compressible flow
Small perturbations cause the shear layer regime. The next section presents an
tr roll up into periodic vortices. Subhar- example of just such a case.
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SECTION 4

WALL SHEAR LAYER CALCULATIONS

4.1 SHOCK TUBE EXPERIMENT. or shadowgraph techniques). These orga-
nized structures are inclined to the flow at

Considered next is the evolution of a wall an angle of approximately 45* . Their wave-
shear layer (i.e.. a boundary layer) behind length is regular and constant at about I
a shock wave in a shock tube. The key mm, which is similar to the acoustic wave
physical aspects of the problem are spacing and, of course, much longer than
depicted in Figure 8. This is a tracing of any wall roughness wavelengths. Similar
a shadow photograph provided by organized structures have been reported by
Dr. H. Reichenbach (Ernst Mach Institut, Spina and Smits (1987) for turbulent
FRG). A planar, constant velocity shock boundary layers in steady, compressible
(Mach number Ms = 1.7) is shown prop- flow (while Prandtl 119331, Bergh 119581
agating to the left. The test section floor and Gad-el-Hak et al. 119841 have reported
consisted of a smooth steel plate (rough- the existence of organized structures in
ness height less than 1 im), while the roof steady, incompressible boundary layers).
consisted of a smooth, poious plate Hence, we postulate that the oscillations in
(ceramic Filtrokelit; roughness height less the shock front velocity trip the wall
than 30 pm). Periodic acoustic waves boundary layer, which rolls up into periodic
emanate from the point where the shock vortex structures and thereby generates
front intersects the floor or roof. These acoustic waves that radiate away from the
waves have a constant spacing of about foot of the shock front.
1 ram. Scanning-electron-microscope pho- The auxiliary scale in Fiure
tographs of the surface show that even such 8 depicts the
nominally smooth surfaces are still rough Reynolds number based on distance behind

on length scales which are large compared the shock front. The flow reaches a critical

to the shock front thickness. Hence, a shock Reynolds number of 3 x l05 at a distance
wave cannot propagate with uniform of only 15 mm behind the shock. hence.
velocity very near the surface. It reflects essentially the entire boundary layer may
from the front face of each roughness be characterized as large Reynolds number.
element, thereby enhancing its strength, turbulent flow.
and as it propagates down the backside of The flow conditions across the M, = 1.70
each roughness element, it loses strength. shock front are listed in Table 2. In
Therefore, near the surface the shock frontvelocity must oscillate, even though it stationary coordinates, states I and 2

denote conditions ahead and behind the
propagates with a constant velocity at largedistances from the surface. shock front. respectively.

4.2 FORMULATION.
Figure 8 also depicts periodic density

structures in the roof and floor boundary A numerical simulation of this shock tube
layer. (The wall boundary layer gas is experiment was performed in the same
cooler and denser than the free-stream spirit as the simulation of the Brown and
flow, and therefore, detectable by schlieren Roshko shear layer case. Namely, we test
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Figure 8. Tracing of a shadow-schlieren photograph of the waves induced by the boundary
layer behind a Mach Me = 1 .7 shock wave. Acoustic waves radiate from the foot

of the shock. Density structures are formed in the wall boundary layer. (Courtesy
of Dr. H. Reichenbach, Ernst Mach Institute FRO.)
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Table 2. Shock Conditions (Ms = 1.70, y = 1,4).

Stationary Shock-Fixed
Coordinates Coordinates

Wall Edge
Flow Field State 1 State 2 ( y=0 ) (y= )

P/P 1 1 3.2 ,,3.2 •3.2

p/p1 1 2.2 3.2 2.2

e/e 1  1 1.46 1.0 1.46

a/a1 1 1.21 1.0 1.21

u/a1 0 0.94 1.70 0.77

u/a (local) 0 0.77 1.70 0.64

the postulate that the dynamics of this wall nates. The temperature varies between the
boundary layer flow is dominated by two- edge value of 430 K, to the wall value of
dimensional inviscid flow effects by 294 K, with the latter corresponding to an
comparing the calculated results with ambient temperature wall boundary condi-
boundary layer data. tion. Other flow variables are listed in

Table 2.
The calculation was performed in
shock-fixed coordinates with the shock The calculation was performed on a grid
located at x = o. similar to those used by with a fine-zoned region consisting of 500
Mirels (1956). In these coordinates, the gas x-cells (Ax = 2) by 60 y-cells (Ay = 1). as
velocity varies between the value ue at the shown schematically in Figure 9. Expand-
edge of the boundary layer (y = ,) ing cells were used above and to the right

of the fine-zoned region to cover a total
tie/u1 = (s-n 2 )/u 1 = 0.77 domain of 17600 by 3000.

to a maximum value uw on the wall (y = The laminar boundary layer behind the

0) shock was approximated by a Tanh(y)
profile for the streamwise velocity and

uw/u I = ws/a I = 1.70 internal energy:

where the gas moves with the shock u(r,y,o)/u1 =MS fly)
velocity, the latter being precisely the (21)
no-slip condition in shock-fixed coordi- v(x,y,o) = 0
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Figure 9. Schematic of the shock tube wall-shear-fayer calculation: (a) and (b) shock w\ave
and boundary layer in stationary and shock-fixed coordinates. respectively: (c)
computational grid-, (d). (e) and (f) wvall shear layer profiles of velocity energy
and pressure. respectively.
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e(.r, y, o)/e I where

= 1.22 + 0.244 Tanh(O.5y - 1.5) (22) r 10 1

where M(y, t) = MS Ay)[1 = 0(y) 1 En sin it
n=

f ( Y) (28)

= 0.741 - 0.286 Tanh(O.5y - 1.5) (23) ri -Y/6 o for y 6o
For convenience, the flow variables were O(Y) = (2)
nondimensionalized by the ambient conci- to for y > 60
tions denoted by subscript 1. By this
formulation, u/aI = Ms = 1.70 on the wall, By this formulation, the maximum pertur-
and u/a1 = 0.455 Ms = 0.77 in the free- bation occurs on the wall, and is zero
stream, thereby introducing the correct outside the shear layer (y > 6o = 7.65) -
amount of circulation into the flow. thus modeling the physical problem as
Similarly, e/e, = 1 on the wall and e/eI = described in the previous section. The
1.46 in the free-stream, thereby satisfying perturbation frequencies Wn were assumed
the correct temperature boundary condi- to be the same as for the free shear layei
tions. The pressure field corresponded to case (Eqs. 18), although it was recognized
the uniform state behind the shock: that there can be some (as yet Lndeter-

mined) change in frequencies due to the
p(..y.o)/p 1 = I + (M 3- l)2y/()'+ ) = 3.2 influence of the wall. A maximum pertur-

bation amplitude of el = 0.01 (with En from
(24) Eqs. 19), was used, corresponding to a +

while the density profile was related to the 1 percent variation in shock velocity near
pressure and internal energy profile by the wall. The pressure was coupled to the
means of the equation of state: local shock Mach number (Eq. 28)

according to the Rankine-Hugoniot condi-
P = p/e(y- 1) (25) tion:

This gives a density of p/pI = 3.2 on the wall p(oyt)/p = 1 + [m2 (y,t)- 122/(Y+ 1)
and p/pl = 2.2 in the free-stream. (30)

The above conditions were used to initialize This produced a + 2 percent pressure
the flow field. The left boundary of the perturbation near the wall.
computational mesh was then driven with
a sinusoidal perturbation on the streamwise 4.3 RESULTS.
velocity profile:

In a preliminary calculation, the inflection
it(0. Y, t)/a I = Mtv, t) point was placed on the wall (y = o). After

(26) 2000 cycles, the shear layer did not roll up:
v(o, y,t = 0 instead, it merely transported the initial

shear layer profile through the grid. Hence.
e(o.y, t) = e(.,y,o) this numerical solution satisfies the

(27) Rayleigh-Tollmien inflection point criterion
p(o. y, t)= p/e(- 1) which states that shear layers without an
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inflection point are inviscidly stable to densities strongly fluctuate, even beyond
small perturbations. the range of the wall and free-stream

values. The vortices created significant
The results of the final calculation are pressure oscillations with peak values of as
depicted in Figure 10. Frame (a) of that much as -22 to +8 percent of P2.
figure presents the overpressure contours
near the left boundary of the mesh (0 4 x
4 200). Acoustic waves radiate from the The flow field time histories were moni-
foot of the shock, similar to those found in tored at stations x = 400, 600. 800 and 950.
the experiment (Figure 8). Frames (b)-(f) These were integrated in time over the last
depict the rollup of the shear layer into 1000 cycles of the calculation (about 20
large rotational structures. The first cusp periods at x = 950'. The resulting mean-
in the material interface appears between flow velocity and density profiles are
x = 120 and 150; by x = 220 the structure depicted in Figure 13 after transformation
has rotated through one-half revolution, back to laboratory-fixed coordinates (sub-
and a complete revolution is visible at x = script o denotes free-stream conditions
280. There is some evidence of incipient above the boundary layer, which corre-
vortex pairing near x = 410, 470 and 650, spond to state 2 behind the shock). The
but the Mode I response seems to results have been scaled by means of the
predominate. By the end of the grid, the boundary thickness 8BL (where u = 0.99
visual spreading rate is about 8' ,i, = 0.015, U ):
which agrees with the optical data of Figure
8.

Figure 11 presents a detailed view of the 1 BL = Y16 BL (31)
flow near the end of the fine-grid (800 w.
x :4 1000). The material interface plot with 8 BL = 7.65, 9.15, 10.11. 11.92 and
shows that the vortex cores have rotated 12.89 for x = 0, 400. 600. 800 and 950.
through many revolutions. The pressure respectively. This figure shows the change
contours indicate that there is a low or evolution of the mean-flow velocity from
pressure region centered on each vortex, the inflow profile (x=0) which contains an
and a recompression region between inflection point, through a transition region
vortices. The smoothness of the pressure (x=400 to 600) where the memory of the
contours indicates that the wall shear layer inflow profile is fading. and finally to the
is free of shocks and basically isentropic, asymptotic profile (x=800 and 950). This
even though the flow is transonic. The scaling seems to collapse the calculated
vorticity contours show that vorticity is profiles quite well in the outer region (0.5
concentrated near the wall, but accumu- < TBL). Near the wall. the velocity in the
lated into the vortex structures. There is first cell increases with increasing x. This
also a baroclinic generation of vorticity is caused by the vortex structures which
near the ends of the vortex structures, due induce an enhanced velocity near the wall
to the entrainment of density gradient (even though the no-slip condition is
through the pressure gradient of each satisfied in the initial conditions and in the
vortex. boundary condition on the left of the grid).

Similar comments apply to the mean
The flow field along the wall (y = 0.5) is density profiles. The vortices entrain hot.
shown in Figure 12. The velocities and low density fluid near the wall. which
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causes the density in the first cell to sublayer. In the wall region. the mean-flow
decrease with increasing x. Clearly. to velocity scales with the wall shear velocity
continue to satisfy the no-slip boundary u., and has the following logarithmic
condition on the wall (i.e.. to accurately dependence on y (White. 1974):
calculate the laminar sublayer). a viscous
flow treatment with very fine zones is I
needed near \=o. Nevertheless. the profiles Klr = - fl ( yir/') + B (32)
look qualitatively like a boundary layer. h

Figure 14 presents the fluctuating flow K= 0.40
profiles corresponding to Figure 13. The
streamwise velocity fluctuations. U' peak B = 5.5
near the wall and at YIBL = I (no doubt. Note that the slope of the profile in these
above and below each vortex structure). coordinates is related to von Karman's
The transverse Velocity fluctuations. v' . constant. K. This equation may be extended
reach a maximum value at Y1BL -: 0.6 to cover the wake region by adding a
(approximately at the height of the vortex so-called "wake function.- Coles (1956)
centers). Note that the fluctuating compo- found that a sin 2 wake function gave the
nents of the flow do not approach zero at best correlation of a variety of turbulent
")BL = 1: in fact. they extend out 3 or 4 boundary layer data (White. 1974): hence.
boundary layer thicknesses. The fluctuating Eq. (32) becomes:
shear stress Li' seems qualitatively

correct. (e.g.. the sign is opposite to Ti )' 1 .+ B + A sin,
K 1B

and the peak value increases from station
1 to 2. and then decays at stations 3 and (33)
4. The peak values of the fluctuating flow
components are listed in Table 1. The peak where
density fluctuations agree very well with
measurements of a hypersonic boundary f2.35 for flatplate (SchIIltz-Gruno\.
layer (Ow\en et al.. 1975). The peak shear A 11940)
stresses are somewhat smaller than the A
low-speed shear laer results. 10.65 for channel flow (Laufer. 1951)

Next. we examine whether the results of This formulation could not be used directly
this \\all shear layer calculation are because, for example. the fluid viscosit\
consistent with known properties of turbu- does not exist in the present inviscid
lent boundary layers. According to exper- calculation. For convenience. then Eq. (33)
imental measurements, turbulent boundary was rescaled in terms of the free-qtream
layers may be divided into three regions: velocity and TIBL. and the \iscosity tern
(1) a laminar sublayer. where 0 - T1BL < was absorbed into constant B'. yielding:
-0.02: (2) a wall region. covering -0.02 <
"1BL -0.2: and (3) a wake region -.

extending over -,0.2 < 11BL < 1. Viscous

effects play a dominant role in the laminar (34)
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where on distance behind the shock. The calcu-
m = tr/UooK (35) lated points were fit in this region with

straight lines (the solid curves) shown in
B'= I 61(6u,/v) + Blu,/Uoo (36) Figure 15, which have the logarithmic

Kc slopes m listed in Table 3.

A' = Au/Uoo (37) Near the wall, it was assumed that the total

shear stress was constant and equal to its
Note that because of the rescaling, the peak value, hence the shear velocity u, can
profile parameters (m, B' and A') depend be evaluated from the definition:
on the wall shear velocity which can vary
with x. Exclusive of the viscous sub-layer, 2
Eq. (34) should describe the mean-flow u'/U - Iu'vImax/U2 (38)
velocity profile over essentially the entire
height of the boundary layer (-0.02 < TIBL This, in turn, can be used to evaluate the

1).
local skin friction coefficient, c f, according

For comparison purposes, the calculated to:
mean-flow velocity profiles are replotted in
Figure 15 using semi-logarithmic coordi- c=2 2
nates. In the wall region (IBL < 0.2), the f u"
profiles fan out with a definite dependence

Table 3. Boundary Layer Parameters for the Shock Tube Case.

Wall Values Profile Parameters
X 8 B -LI'.''Cf

8BL -u7 v / U O2_ uT/U. (10") m B' A' K

0 7.65 .....

400 9.15 0.0013 0.0360 3.5 0.106 0.3691 0.6209 0.338

600 10.11 0.0016 0.0400 4.0 0.0910 0.3984 0.5916 0.439

800 11.92 0.0012 0.0346 2.9 0.0755 0.4336 0.5564 0.456

950 12.89 0.00059 0.0243 1.4 0.0628 0.4343 0.5557 0.387
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The local skin friction coefficients eva- with the wake profiles associated with
luated from this calculation are listed in turbulent boundary layers.
Table 3: they vary between values of 1.4
to 4 x 103 which are in excellent agreement According to Schlichting (1968). the

with smooth-wall, turbulent boundary layer mean-flow velocit' profile associated with
measurements (1.5 to 3 x 10-3) of Martin turbulent boundary layers can be approxi-
meaure t (mated by a power function:
(1958).

Given the logarithmic slope and the shear = 0 99 (q BL)11n (41)

velocity, one can solve Eq. (35) for the von where T)BL = y/SBL. The value n = 7
Karman constant: correlates turbulent boundary layer data for

-K= ur/U., m (40) flat plates with zero pressure gradient. This
profile is depicted in Figure 15 as a

The "von Karman constants" so evaluated double-chain-dashed curve. It gives consid-
from the calculated velocity profiles are erably fuller profiles (e.g., u/U,, w 0.6)
listed in Table 3. They vary between values near the wall than the present calculation
of 0.34 to 0.46 (with a mean value of 0.405) (u/U® - 0.1 to 0.2).
- which is in excellent agreement with the
published values of 0.40 and 0.41. In other Previously Mirels (1956) reasoned that the
words, the calculated mean-flow velocity turbulent boundary layer behind a shock
profiles (specifically, the combination of wave should be similar tote thurbulentthe slopes of these curves and their shear boundary layer on a flat plate. and thus he
velocities) are consistent with logarithmic assumed that n = 7 power function profileprofiles associated with turbulent boundary applied to the shock tube case. The presentlayers in the w itall region. wall shear layer calculation. however.indicates that mean-flow velocity profile for

the shock tube case does not follow this nFigure 15 also shows that in the outer = 7 power function - instead, it resembles

region of the boundary layer. the calculated th e unry l ils mea sree for

points tend to converge to a single profile cases with adverse pressure gradients. The

ji.e.. u/U * -- f(tL)I which is basically triple-chain-dashed curve in Figure 15
independent of distance behind the shock represents such data of Schubauer and
front. The dashed curve in that figure Spangenberg (1960), and it can be seen that
represents Eq. (34) for x = 950 (constants present calculations are very similar to their
A' and B' were evaluated at IBL = I and measured profile. Hence. it is logical to
0.1). The calculated profiles have the same ask: Which is the correct profile for a
shape as the wake curve, with the maxi- boundary layer behind a shock wave? In
mum differences being less than 8 percent. other words, are the profiles of the present
This agreement is quite good. considering results an artifice of the calculational
that the sin 2 function is an approximation method, or are they real? Accurate.
to a variety of incompressible boundary experimentally-measured profiles (e.g.. by
layer data. In other words, the calculated means of laser-doppler velocimetry) could
mean-flow velocity profiles are consistent answer this question: unfortunately. such
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data is not available.3 Instead, we shall while in the free stream u = U,. The
address this question indirectly by consider- pressure was chosen so that the free stream
ing a boundary layer case that has a Mach number was M = 0' Th.-e inflection
plethora of velocity-profile data - namely, point and the initidi tracer particles were
the tripped flat plate case. This is described located at y = 3.
in the following section. The left boundary of the grid was driven

4.4 TRIPPED FLAT PLATE CASE. with the same 1;ow field with a sinusoidal
perturbation on the streamwise velocity:

Consider a two-dimensional, laminar
boundary layer developing along a smooth i o t) /U
flat plate in the absence of any external 10
pressure gradient. The Mach number of the f (Y) [1 +061) E E n sin w,1 tj (43)
free-stream flow above the boundary layer n = I
is taken as M,. = 0.2, so that the flow is
nearly incompressible. Then, assume that ( (y) = 1-f (y)I (44)
a geometric protuberance is located on the
smooth wall. This protuberance causes two with = 0.10. Note that by means of Eq.
physical effects: (1) it creates an inflec- (44), the perturbations reach a maximum
tion-point in the streamwise velocity value (a 0.025 U,,) at about half the height
profile: and (2) the Strouhal shedding of the shear layer and are zero outside this
frequency of its wake perturbs the wall region.
layer, thus leading to a "turbulent" The calculation as run 1 Cycles toboundary layer flow.Thcaclto waru 10cyeso

eliminate transients from the start-Lip
The development of the fluctuating flow process and to build up data for analyzing
downstream of this disturbance was the mean-flow profiles. The flow field at the
simulated numerically by the high-order end of the calculation (t = 3617) is depicted
Godunov code. The computational grid in Figure 16. The tripped wall shear layer
used was identical to that of the shock tube rolled up into large rotational structures
case. The flow field was initialized with a similar to the shock tube calculation, except
uniform density (p = 1) and pressure (p = in this case the structures rotated in a
17.86) field. The wall shear layer was clockwise direction. The material interface
modeled by a Tanh(y) streamwise velocity plots (Fig. 16 a,b,c) show that the first cusp
profile: appears at x a 40, and the vortex structure

has rotated through one-half a revolution
u(. .o)/U® =fiy) (42) at x a 55. By x a 90 the vortices are

well-formed and have rotated through one
=0.511 +Tunh(O.5y- 1.5)jv(x,y,o) =0 revolution. Two cores are seen in the

vortices at x = 210, 320 and 430 (i.e.. every
Note that by construction, u = 0 on the wall other vortex), thus indicating a Mode II
thereby satisfying the no-slip condition, pairing, but multiple merging did not seem

3. Martin (1958) did report velocity profiles for a boundary layer behind a shock. However. these
velocities were not measured directly but were inferred from interferometric measurements of density
profiles by use of the Crocco relation. This relation is valid only along streamlines and cannot he
applied in turbulent boundary layers because of the large-scale rotational structures.
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to occur even though the first ten pertur- detailed and extensive measurements of
bation frequencies were used. Also shown mean velocity profiles for a tripped.
in Figure 16d,e.f are the density, overpres- turbulent boundary layer on a flat plate:
sure and vorticity plots corresponding to this set of data is compiled in Coles and
Figure 16c. The maximum pressure and Hirst (1969). Two of these stations, x =
density variations are less than one-half 79cm (profile 1400-10) and x = 499cm
percent for this low speed flow. (profile 1400-26), which cover the x/8

range of the numerical simulation, are
Clearly. this calculation captures only the shown in Figure 17. The dashed curves on
largest-scale rotational structures that are that figure represent the Coles bound-
essentially independent of Reynolds num- ary-layer-function fits to that data, e.g..
ber. Smail-scale vortices, which should be
embedded in the large rotational structures,
and which are. no doubt, Reynolds number U = 0.0779 tn iBL
dependent (e.g., as found in the Brown and +. ,4
Roshko free shear experiments), are not +0.849+0.141 sin 2 ( ? BL) (45)
resolved on this grid. for station x = 79cm. This data may be used

The flow field was monitored at stations x to evaluate the accuracy of the calculation.
= 400, 600, 800, 950. This data was
integrated over the last 4000 cycles to Comparing the solid curve of the calcula-
establish the time-averaged profiles. The tion (x = 600; x/8 = 57) with the lower
resulting mean-flow, streamwise velocity dashed curve (Eq. 45) representing the
profiles are presented in Figure 17. The Wieghardt and Tillmann data (x = 79cm:
profiles are qualitatively similar to the x/6 = 56), one sees that the two curves are
previous calculation in that they converge identical-except for the first calculated
to a single profile in the wake region and point. Similar conclusions apply to the two
exhibit a logarithmic behavior in the wall downstream stations; outside the first row
region. Now, however, the magnitud'.!s of of celis, the calculated velocities agree very
the velocity are very similar to those well with the data (e.g.. less than 4 percent
obtained from the n = 7 power function difference). In the first row of cells.
profile depicted as the chain-dashed curve, however, the calculated velocities are 7 to
No doubt, the flow at station x = 400 is 14 percent too large, probably because
transitional. viscous losses near the wall are not

included in the calculation (e.g., the viscous
The calculated profiles were fitted with the sublayer extends to approximately 20
Coles boundary layer function (Eq. 34), percent of the height of the first row of
and the profile parameters are listed in computational cells, and large momentum
Table 4. The von Karman constants losses in this sublayer due to viscosity could
inferred from these fits (0.37 4 K 4 0.50) decrease the cell-averaged momenta in
are quite reasonable. Comparing with these cells by as much as 20 percent).
available experimental data (Table 4), we
find that local skin friction coefficients are The root-mean-squared flow fluctuations
too small by a factor of 6, and the were also evaluated for this case. They are
associated shear velocities are too small by compared with the hot-wire anemometry
a factor of 2.5. Wieghardt and Tillman measurements of Klebanoff (1955) in
(1944) have performed some of the most Figure 18 (dashed curves), and the peak
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Table 4. Boundary Layer Parameters for the Tripped Flat Plate Case.

Stations Wall Values Profile Parameters

.iiTVLJ2' UTr/U 00I Ci
x & x/8 (10-3) (10"1) m B' A' K

Calculation

0 7.65 0 .... ..........

400 9.5 42 0.531 0.0230 1.06 0.0619 0.763 0.227 0.37

600 10.5 57 0.259 0.0161 0.518 0.0428 0.789 0.201 0.38

800 11.5 70 0.226 0.0150 0.452 0.0319 0.797 0.193 0.47

950 12.5 76 0.186 0.0136 0.372 0.0273 0.806 0.184 0.50

Wieghardt & Tillmann(1944)

79cm 1.41cm 56 1.59 a  0.0398 3.17 0.0779 0.849 0.141 0.51

499cm 6.45cm 77 1.22a 0.0349 2.43 0.0783 0.880 0.110 0.45

Klebanoff (1955) 1.38a 0.0371 2.75

Schlichting (1968)
(Eq. 21.12:Rex = 1.9x107 ) 1.04" 0.0322 2.07

aEvaluated from Eq. 38

values are listed in Table 1. From these the features found in the wake region of
comparisons it is obvious that tf, r.m.s. turbulent boundary layers on flat plates.
flow fluctuations are predicted quite poorly The calculated mean-flow velocity profiles
by the present calculation, even though the agree with the data of Wieghardt and
mean profiles are in good agreement with Tillmann, except for the first row of cells
the data. Presumably this is because on the wall. This agreement with data
fine-scale vortices, which should be em- implies that our calculated profiles are
bedded within the large rotational struc- neither fortuitous nor an artifice of the
tures. are not resolved in this calculation numerical simulation, and that the calcula-
and because three-dimensional effects are tion qualitatively represents the largest
not included. fluid-dynamic features resolvable on the

computational grid.
4.5 SUMMARY.

The above comparisons offer aposteriori
We conclude that this tripped flat plate evidence that the velocity profiles of the
calculation qualitatively simulates some of shock tube calculation are also qualitatively
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correct. The large-scale features of the flow above each vortex structure. In other
field (e.g., the formation of discrete density words, the fluctuating flow associated with
and vortex structures, the generation of turbulent boundary layers is merely the
acoustic waves at the foot of the shock evolution of a perturbed but unstable wall
front. and the visual spreading rate) agree shear layer. This concept is not new: it has
with the available shock tube data. The been expressed by Coles (1969). and
mean-flow velocity profiles exhibit a log(y) others.
velocity distribution near the wall, while in
the outer region the profiles collapse to a These wall-shear-layer calculations Capture

single curve that behaves like the wake only the largest-scale. inviscid rotational
function of a turbulent boundary layer, structures. Small-scale vortices (which mnav
Hence. it appears that the turbulent depend on the Reynolds number) will be

boundary layer profile behind a shock (e.g.. shed from the wall and entrained into the
Fig. 15) is distinctly different from the flat large rotational structures. but a much finer

plate case (e.g.. Fig. 17). Perhaps this computational grid would be required to

difference is related to the slope of the resolve such effects. Viscous forces must

mean velocity profile (f/ry ). which is be included to correctly model the laminar
negative for the shock tube case (in sublayer. Eventually the boundary layer
shock-fixed coordinates) and positive for will develop three-dimensional vortex
the flat plate case. structures, and accurate numerical simula-

tions must also include these effects.
Referring back to Figures 1 la or 16c. it can Nevertheless, the above agreement \\ith
be seen that the logarithmic velocity region data indicates that such features as the
near the wall is simply the time-averaged mean-flow velocity profiles are dominated
velocity field induced below each vortex, by two-dimensional inviscid effects over
while the wake profile corresponds to the most of the boundary layer (e.g.. 0. 1 < qBL
time-averaged velocity field within and 4 1).
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SECTION 5

WALL JET CALCULATION

The final case considered is a numerical a Polhausen profile representing (lhe \\all
simulation of a low-speed wall jet propagat- boundary layer:
ing into a quiescent fluid, similar to the
water tunnel experiments of Bajura and U (x, y, 0)

Catalano (1975). The calculation dramati- 0.5 Uj I1 -Tanh(v- 17)1 for
cally demonstrates the strong coupling = 0- -f
between the dynamics of the free shear 2 UJ I -[- +0.5 31 for ' -

layer on top of the jet and the wall boundary
layer below the jet. v(x, y, o) = 0 (46)

5.1 FORMULATION. where

The calculation was performed on a grid Uj = 2
with a fine-zoned region of 200 x-cells by
80 y-cells. (Ax=Ay=l). as shown schemati- Y/60
cally in Figure 19. Expanding cells were The initial shear thicknesses were 8,,
used above and to the right of the and 6 on the wall and free shear layers.
fine-zoned region. resulting in a total respectively. The center line of the free
domain of 8500 by 1500. An inviscid (i.e.. shear layer was at v = 17 (- H). The jet
slip wall) boundary condition was em- was initializedwithuniformthermod nam-
ployed along the wall, while an outflow inities:

boundary condition was used at the right
edge of the grid. p=l; p= 71.4 : e=179.

The flo\\ field was initialized with a wall The pressure was selected so that the peak
jet velocity profile consisting of a Tanh(y) value of the Mach number of the jet was
profile for the free shear layer portion and Mj = 0.2.

Grid

Fine grid
YF . . . .- - -. . . . .-"1 - - - - -. - r -

y Free shear layer

Y

Slip wall b XF XR

Figure 19. Schematic of the wall jet calculation.
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The left boundary of the grid was driven and induce the rollup of vortex A on the
with the same wall jet profile, using a wall (frames a and b). Structure 1-2
sinusoidal perturbation on the streamwise entrains vortex 3 from below (frames c and
velocity component (Eq. 15). The first ten d). Vortex 4 triggers the creation of vortex
modes were employed, with a maximum B on the wall (frames d and el. Then
perturbation amplitude of el = 0.01. structure 1-2-3 entrains vortex 4 from
Material lines, initially located at the below, which causes the merger of wall
inflection point of the free shear layer (y vortices A-B (frames e and f). Finally. the
= 17) and in the boundary layer (y = 2), large-scale structure 1-2-3-4 interacts with
were tracked to follow the interactions of the structure A-B. causing it to explode off
the two shear layers, the wall (frame g). These structures

(1-2-3-4 and A-B) then interact to form the
5.2 RESULTS. first pair of a von Karman-type vortex street

which passes off the grid. The creation of
The calculation was run 8000 cycles. Figure structure 1-2-3-4 is here labeled a Sequen-
20 presents a series of frames of the tial Merger of four vortices.
calculated material interface shapes cover-
ing one complete period during the Meanwhile, vortices 5 and 6 have paired.
calculation. The merging patterns are quite iducing the rollup of vortex C on the \all
different from those found in the above-de- (frames d and e); also vortices 7 and 8 have

scribed shear layer calculations (due to paired. inducing the rollul of vortex D on

differences in K. r and Xp). In general. the the wall (frames f and g). Then the pair 5-6
free shear layer becomes unstable first4 , merges with pair 7-8. forcing wall vortices

and forns positive vortex structures C-D to merge (frames h and i0. Finally. the
(labeled sequentially with cardinal num- large-scale structure 5-6-7-8 interacts with

bers). Induced velocities from these struc- structure C-D, causing it to explode off the

tures cause the wall shear layer to become wall (frames i and j). These Structures

unstable. and form negative vortex struc- (5-6-7-8 and C-D) then interact to form the
tures (labeled sequentially wvith capital second pair of a von Karman-type vortex
letters). that explode off the wall. This street (frames k and I) which passes off the

behavior is qualitatively similar to that grid. The creation of the large-scale

found in the wall jet experiments of Bajura structure 5-6-7-8 is here labeled a Paired

and Catalano (1975). Large-scale struc- Merger of four vortices.
tures from the two shear layers interact and This Paired Merger process is repeated
pair. thus creating a von Karman-type creating large-scale structures 9-10-11-12
vortex street of alternating positive and and E-F which form the third pair of a \on
negative vortex structures. Karman-type vortex street (frames o and p)

that passes of the grid.
The following is a detailed description of
this process. Frames (a) through (g) of This is followed by a Sequentiul Afh'r er of
Figure 20 show the formation of structure vortices 13,14,15 and 16 (frames I through
1-2-3-4. Vortices I and 2 pair and merge. p) and the creation of the wall structure

4. *Preliminary calculations used a Tanh(v) profile with an inflection point off the wall in place (,l a
Polhausen profile. These results also showed that the free shear layer became unstable first. Hence. the
results w ere insensitive to the profile used for the wall shear layer.
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Figure 20. Numerical simulation of a wall jet (X = -1, r = oo, k= 0). The figures depict
the evolution of the material interfaces over one period of the flow. \Vortices
forming on the free shear layer are labeled sequentially with cardinal numbers.
while those forming on the wall layer are denoted by capital letters.
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G-H. These structures interact to form the each vortex structure due to the rotational
fourth pair of a von Karman vortex street flow, while a recompression is cre'Ited in
(frames s and t) that passes off the grid. the braid region between structures. The

vorticity in the wall shear layer accumulates
Meanwhile. vortices 17 and 18 have paired but it remains near the wall until the wall
(frames p and q) creating wall vortex L, vortex structures are entrained into the von
vortices 19 and 20 have paired (frames r Karman vortex street.
and s) creating wall vortex J; and vortices
1 and 2 have paired (frame t) creating wall The flow field time-histories were moni-
vortex A. Note that the interface shape in tored at stations x = 85 and 170 (corre-
frame (t) is essentially identical to that of sponding to 5H and 10H). These were
frame (a). Hence. the whole process is then integrated in time over the last 400() cycles
repeated. Also note that the vortex pair of the calculation (with about 8 large-scale
17-18 and the pair 19-20 pass off the grid structures passing station 170). The result-
without merging (frames a through f). ing mean velocity profiles are presented in

In summary. the vortex merging on the free Figure 21. The results have been scaled b\

shear layer of the wall jet follows this the jet thickness S. (where u = 0.5 Utmiax):

sequence: q 6 (47)

" I Sequential Merger (1-2-3-4) where Sj = 17, 21.7 and 31.2 for ' = 0. 85

" 1 Paired Merger (5-6-7-8) and 170, respectively. Figure 22 demon-
strates that the mean velocity u profiles at

" 1 Paired Merger (9-10-11-12) x = 85 and 170 are considerabh different
than the inflow profile (shown as a sOlid

" 1 Sequential Merger (13-14-15-16) curve). The peak value of u decays with
distance, indicating that the strearn\ise

" 1 Pairing (17-18) momentum is spread laterally due to
large-scale mixing. The shear la\er portion

" 1 Pairing (19-20) of the profiles (0.5 < "qj) at the two qtations
collapses quite well with this scaling. Theand then the sequence repeats. The wall layer portion of the ui profiles (xli <0(.5 )

Sequential Mergers correspond to a Mode IV is inific n of the orte0

response. while the Paired Mergers corre- anty modified by the vortex

spond to two Mode 11 responses followed structures of the free shear laver. By x =

by a Mode IV response. Evidently the 170, a separated flow profile has devel-

higher modes did not directly couple into oped. The large-scale structures induce a
te dmean transverse velocity v across the entirethe dynamics for these flowv lengths. width of the grid.

Figure 21 depicts the flow field contours
corresponding to the last frame of Figure Figure 23 presents the fluctuating flo\\
20. The vorticity on the free shear layer profiles (corresponding to Figure 22). while
rapidly accumulates into the large struc- the peak values are listed in Table . The
tures as a result of the first pairing of streamwise velocity fluctuations peak near
vortices, and thus, the braid regions are the wall (l1j w 0.2) and near the free shear
essentially devoid of vorticity. A low layer (1.j - 0.75), similar to the results of
pressure region is formed in the center of Bajura and Catalano (1975). The calculated
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peaks. however, are an order of magnitude The merging was faster than in the
larger than the data, presumably due to the spreading shear layer calculation because
much larger shear used in the calculation. of the larger absolute shear and it was
(Their experiments had an exit Reynolds smoother and more periodic because the
number of only 445.) The transverse uniform density assumption of the \\all jet
velocity fluctuations also have two peaks. calculation virtually eliminated an\ baro-
one at j -- 0.5 and the other at Tqj = 1, at clinic generation of vorticitx. \ortex
the last station. The fluctuating shear pairing on the free shear layer triggered
stresses are positive and have a single peak instabilities in the wall shear layer which
at Tlj = 0.75. indicating that the structures rolled up into a vortex directly underneath
on the shear layer are controlling the each large structure on the free shear la\ er.
mixing process. Merging of these latter structures caused

the wall vortices to merge. In the final stage
of interactions, the large-scale ,structures

5.3 SUMMARY. from the two shear layers paired. forrning
a von Karman-type vortex street. In this
way, fluid from the wall layer of the jet was

The dynamics of the wall jet was mixed across the free shear laver. and vice
considerably different than the previously versa. In effect, the rotational structures on
described cases. The free shear layer on top the free shear layer caused the wall laver
of the jet reacted first by forming discrete to periodically explode off the \Val. thus
vortex structures which paired and merged. creating a separated flow profile These
The merging patterns consisted of both results are qualitatively similar to tle wall
paired and sequential merging of four jet experiments of Bajura and Catalano
vortices, corresponding to both Mode (1975). Peak velocity fluctuations. ho\e\-
1l-type and Mode IV-type response - even er, are larger in this calculation hecause of
thougLh the first ten subharmonics were the faster merging and larger absolute
used to perturb the jet. shear.
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SECTION 6

CONCLUSIONS AND GENERALIZATIONS

Tile present inviscid calculations seem to In fact, molecular transport effects such as
duplicate quite well the major flow features fluid diffusivity and viscosity are inherently
that have been observed in experiments. diffusional effects. They correspond to
These include the formation and growth of fluctuations on a molecular scale, but on
large rotational structures. the visual a macroscopic scale they can only produce
spreading rates, and the mean-flow pro- smoothing - that is, they can never by
files. Presumably. these features are domi- themselves create the self-organized behav-
nated by two-dimensional effects. Tile ior such as the large-scale rotational
fluctuating components of tile flow agree structures presented here. Consequently.
qualitatively with the available experimen- the macroscopic fluctuations of the flow are
tal data. hipwever. peak fluctuations such caused exclusively by inviscid. convective
as Li' or v' can be 1.5 to 2 times larger flow effects - that is, by the nonlinear
than the data because of tile two-climen- dynamics of unstable shear layers.
sional flow approx iation. The calculations presented here show that

the fluid-dynamic response of three funda-
It is now clear that the fluctuating. time- mentally different shear layers is quite
dependent flow variations associated with similar in that they roll up into large-scale
these "steady" shear layer problems are rotational structures which grow by interac-
caused by the dynamic evolution of tions and merging. There are five features
unstable shear layers. By taking into which these shear layers have in common.
account one more degree of freedom (time) namely:
in these "steady'* shear layer calculations. 1. The flows contain an initial tanen-
one can determine not only the mean flow tihl velocity change (i.e. a sear
but also the fluctuating tlow field without laela.
any turbulence modeling. Since the present
calculations are in good agreement with the 2. The initial shear layer thickness is
available experimental- data. we conblude non-zero (i.e.. the problem is
that the evolution of these unstable shear desingularized).
layers is dominated by inviscid flow effects.
The calculations also point out the im- 3. The velocity profiles are unstable to

portance of accurately evaluating the infinitesimal perturbations.
convective derivatives. Viscous forces and 4. Perturbations exist in the flow
molecular diffusion are too small (relative (either from external sources. or
to convective effects) to significantly affect from internal sources such as tile
the dynamics of • such large-Reynolds- growth of molecular fluctuations).
number flows. Molecular effects are then
relegated to the relatively minor role of 5. The Reynolds number of the flows
de-singularizing.the inviscid problem by are large (i.e.. the convective flow
spreading the shear over a small but finite velocities are orders of magnitude
volume of fluid. and they create additional larger than any molecular diffusion
vorticily at wall boundaries, velocities).
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These five common features seem to be without modeling the fluctuating flow
responsible for the development of the components. Fortunately. feature 7 can be
organized rotational structures in these satisfied because these structures are large
(and probably other) shear layers. and can be resolved on computational grids

that are orders of magnitude coarser than
Successful numerical simulations of such those needed to resolve molecular transport
fluctuating flows have numerical require- effects.
ments which parallel the above features,
namely: Shear layers occurring in most practical

applications will experience three-dirnen-
1. They contain the correct amount of sional perturbations. and eventually the

circulation, by means of initial and fluctuating kinetic energy will be shared
boundary conditions. over all of these dimeisions. Hence. the

principal limitation of the present calcula-
2. The initial shear layer is resolved on tions is the two-dimensional flow approxi-

the computational mesh. mation.

3. The initial velocity profile contains Nevertheless, the present large-Reynolds-
an inflection point, hence the flow number approach (i.e., the direct solution
is unstable. of the conservation laws of gas dynamics)

offers one technique for extending the
.h serm l s reered w numerical simulations of fluctuating shear
a spectrum of frequencies. layers to the nonsteady, compressible flow

5. The numerical Reynolds number of regime. Such numerical solutions are

the finite difference solution is large valuable for at least three reasons: (1) (hey

so that convective flow effects are provide idealized solutions against which to

accurately evaluated (i.e., the algo- compare real flows: (2) the problem

rithm is nondiffusive enough to parameters (e.g.. initial and boundary
allow the instabilities to grow, and conditions) can be controlled more easilynot be artificially damped by numer- than in experiments: (3) the flow field can
ical diffusion), be sampled nonintrusively and easilyanalyzed. Such comparisons between ideal-

Accurate numerical simulations have two ized calculations and experimental data
additional requirements: cannot help but increase our understanding

of the fluid dynamics of such complex
6. The calculations must be at least flows.

two-dimensional and time depen-
dent, even for problems which are In closing, it should be pointed out that the
steady in the mean or time-averaged organized structures of the shear layer
sense. flows presented here can be viewed as

noteworthy examples of self-organized
7. The computational grid must be fine response of nonequilibrium systems as

enough to resolve the rotational described by Nicolis and Prigogine (1977)
structures. and Prigogine (1980). Whereas low-

Reynolds-number shear layers smooth out
Feature 6 implies a direct numerical tangential velocity discontinuities by molec-
simulation of the conservation equations. ular diffusion, large-Reynolds-number
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shear layers remove the velocity nonequili- to the nonlinear range of nonequilibrium
brium by forming large-scale rotational dynamics. The system is unstable. and the
structures. The initial and boundary flow evolves to a new. more stable state
conditions of the problem (i.e., shear flow) which is considerably more complex yet
place the system in a state corresponding self-organized.
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